Weak convergence of random sets in Banach spaces

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Weak Convergence of Random Sets

In this paper the classical Portmanteau theorem which provides equivalent conditions of weak convergence of sequence of probability measures is extended on the space of the sequence of probability measures induced by random sets.

متن کامل

Weak Convergence Theorems for Finding Common Elements of Finite Sets in Banach Spaces

In this paper, we deal with the problem for finding a common element of finite sets in a Banach space. We first prove that an operator given by a convex combination of sunny generalized nonexpansive retractions in a Banach space is asymptotically regular. Using this result, we obtain a weak convergence theorem which is connected with the problem of image recovery. Further, using another weak co...

متن کامل

Weak convergence theorems for symmetric generalized hybrid mappings in uniformly convex Banach spaces

‎In this paper‎, ‎we prove some theorems related to properties of‎ ‎generalized symmetric hybrid mappings in Banach spaces‎. ‎Using Banach‎ ‎limits‎, ‎we prove a fixed point theorem for symmetric generalized‎ ‎hybrid mappings in Banach spaces‎. ‎Moreover‎, ‎we prove some weak‎ ‎convergence theorems for such mappings by using Ishikawa iteration‎ ‎method in a uniformly convex Banach space.

متن کامل

Weak convergence theorem for Lipschitzian pseudocontraction semigroups in Banach spaces

In this work, theorems of weak convergence of an implicit iterative algorithm with errors for treating a nonexpansive semigroup and a Lipschitzian pseudocontractive semigroup are estabilshed in the framework of real Banach spaces. 2010 Mathematics Subject Classification. Primary 60J05; Secondary 60J20.

متن کامل

Weak∗ closures and derived sets in dual Banach spaces

The main results of the paper: (1) The dual Banach space X∗ contains a linear subspace A ⊂ X∗ such that the set A of all limits of weak∗ convergent bounded nets in A is a proper norm-dense subset of X∗ if and only if X is a non-quasi-reflexive Banach space containing an infinite-dimensional subspace with separable dual. (2) Let X be a non-reflexive Banach space. Then there exists a convex subse...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 1992

ISSN: 0022-247X

DOI: 10.1016/0022-247x(92)90136-2